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Abstract. For two particles in a disordered chain of length L with on-site interaction U , a duality trans-
formation maps the behavior at weak interaction onto the behavior at strong interaction. Around the fixed
point of this transformation, the interaction yields a maximum mixing of the one body states. When L ≈ L1

(the one particle localization length), this mixing results in weak chaos accompanied by multifractal wave
functions and critical spectral statistics, as in the one particle problem at the mobility edge or in certain
pseudo-integrable billiards. In one dimension, a local interaction can only yield this weak chaos but can
never drive the two particle system to full chaos with Wigner-Dyson statistics.

PACS. 05.45.+b Theory and models of chaotic systems – 72.15.Rn Quantum localization –
71.30.+h Metal-insulator transitions and other electronic transitions

The competition between two body (electron-electron) in-
teraction and one body kinetic energy in disordered sys-
tems is a fundamental problem of permanent interest. We
denote by U, t and W the parameters characterizing the
interaction, the one body kinetic energy and the fluctu-
ations of the random potential for a d-dimensional sys-
tem of size L. When U is small, the N -body eigenstates
are close to the symmetrized products of one body states
(Slater determinants for spinless fermions) which contain
the effects of t and W completely. The effect of U can be
treated as a perturbation, yielding a mixing of those sym-
metrized products. When U increases, the consequence
of this mixing is that an increasing number of one body
states is needed to describe the exact N -body states. If
the one body states are localized by the disorder, delo-
calization in real space results from this mixing. This is
why the interaction can induce in certain cases metallic
behavior in a system which would be an insulator other-
wise. When U is large and dominates, one can get on the
contrary a correlated insulator which might be metallic at
weaker interaction. A Wigner crystal pinned by disorder
is a good example of such an interaction-induced insula-
tor. In the large-U limit, t becomes the small parameter,
and one expands in powers of t2/U . The issue is to know
the range of validity of these perturbative approaches,
and to describe how the system goes from the first limit
to the second when U increases. For this purpose, we
consider a one-dimensional disordered lattice with on-site
interactions.
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We discuss the simple case of two electrons with
opposite spins (the orbital part of the wavefunction is
symmetric as in the case of two bosons). For the main
sub-band of states centered around E = 0, both in the
limits where U = 0 (free bosons) and U = ∞ (hard-core
bosons), the two body states can be described in terms
of two one body states. We use a duality transformation
U → at2/U to map the small U -limit onto the large
U -limit (a ≈

√
24). We first prove that the lifetimes of

the free boson states and of the hard-core boson states
are equal at the fixed point Uc of the duality transfor-
mation. At Uc one has the maximum mixing of the one
body states by the interaction and the enhancement
factor [1] is maximum for the two particle localization
length L2. Far from Uc, L2 is smaller and satisfies the
duality relation. L2 → L1 (the one particle localization
length) both for U → 0 and U → ∞. The study of the
signature of this duality transformation on the spectral
fluctuations is very interesting. For E = 0, taking L = L1

and increasing U , one gets two thresholds defining a
range of interaction UF ≤ U ≤ UH. Outside this range,
the levels are almost uncorrelated. Inside this range,
the level repulsion is maximum, but does not reach
the universal Wigner-Dyson (W-D) repulsion. The two
particle system is not fully chaotic, but exhibits a weak
chaos which is not arbitrarily situated between Poisson
(integrable) and Wigner (chaos). The spacing distribution
p(s) between consecutive energy levels and the statistics
Σ2(E) (variance of the number of energy levels inside
an energy interval E) are characteristic of the third
known universality class [2]. One finds p(s) ≈ 4s exp(−2s)
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and Σ2(E) ≈ 0.16 + 0.41E for periodic boundary
conditions. This is very close, if not identi-
cal, to the distributions found in many “criti-
cal” one body systems, such as an electron in
a 3d random potential at the mobility edge
[2–4] or in certain pseudo-integrable quantum billiards
(rational triangles [5], rough billiards [6] and Kepler
problem [7]). Furthermore, p(s) saturates to 4s exp(−2s)
for U ≈ Uc only when the ratio 1 ≤ L1/L ≤ 10. We
conclude that a local interaction can never drive the two
particle system to full quantum chaos with Wigner-Dyson
statistics in one dimension, but can at most yield weak
critical chaos in a certain domain of interaction and of the
ratios L1/L. We show in addition that this weak chaos is
accompanied by multifractal wavefunctions, in agreement
with reference [8].

Each one particle Hamiltonian is given by

H0 = t

L−1∑
n=1

(|n〉〈n+ 1|+ |n+ 1〉〈n|) +
L∑
n=1

Vn|n〉〈n| (1)

where Vn is uniformly distributed inside [−W,+W ] and
the interaction is described by

Hint = U

L∑
n=1

|nn〉〈nn|. (2)

Denoting |α〉 the one body state of energy εα and the
amplitude 〈n|α〉 = Ψα(n), only two one body states |α〉
and |β〉 are necessary to describe a free boson state |fb〉 =
|αβ〉 with components 〈n1n2|fb〉 given by

(Ψα(n2)Ψβ(n1) + Ψα(n1)Ψβ(n2))/
√

2. (3)

In this free boson basis, the interaction matrix elements
〈αβ|Hint|γδ〉 = 2UQγδαβ where

Qγδαβ =
L∑
n=1

Ψα(n)Ψβ(n)Ψγ(n)Ψδ(n). (4)

This Q-matrix has been studied [8] in one dimension for
L ≥ L1. It was found that its lines, where are the terms
Qγδαβ coupling a given |αβ〉 to all the other |γδ〉, is a mul-

tifractal measure in the |γδ〉 space. Therefore the effective

density ρeff2 of |fb〉 states coupled by the square of the in-
teraction matrix elements is reduced. For L ≈ L1, one has

ρeff2 (L1) ∝ L1.75
1 , instead of the total two body density

ρ2 ∝ L2
1. This was confirmed by a study of their Fermi

golden rule decay.
As noticed in reference [9], there is a useful represen-

tation for an on-site interaction U → ±∞, composed by
a small set of LM = L “molecular” states |nn〉 and by
a large set of LH = L(L − 1)/2 hard core boson states
|hc〉 built from re-symmetrized Slater determinants. Their
components 〈n1n2|hc〉 are given by

(Ψα(n2)Ψβ(n1)− Ψα(n1)Ψβ(n2))sgn(n2 − n1)
√

2
· (5)

The re-symmetrization is insured by the function
sgn(x) := x/|x|. For hard wall boundaries (which we as-
sume in our discussion), one has to use the same one body
states |α〉 and |β〉 both for |fb〉 and |hc〉. However, if the
system is closed on itself and forms a ring threaded by
a flux Φ, the re-symmetrization on a torus reveals inter-
esting topological aspects (see Ref. [10]). One has to use
different one body states in the two limits which differ in
Φ by half a flux quantum (to periodic boundary conditions
for U = 0 correspond anti-periodic boundary conditions
for U → ±∞).

In this basis, the two body Hamiltonian H has the
structure

H =

[
HM HC

HT
C HH

]
. (6)

HM and HH are LM ×LM and LH ×LH diagonal matri-
ces with entries U + 2Vn and εhc = εα + εβ, respectively.
HM and HH are coupled by a rectangular matrix HC re-

sulting from the kinetic terms
√

2 t
∑L−1
n=1(|n, n+1〉〈n, n|+

|n, n〉〈n, n + 1| + h.c.) of H. The matrix elements of HC

are equal to
√

2 t
(
Ψβ(n)D̂Ψα(n)− Ψα(n)D̂Ψβ(n)

)
, where

D̂Ψα(n) := Ψα(n+1)−Ψα(n−1). The states |hc〉 of energy
εhc ≈ 0 are coupled by a term of order t to the few states
|nn〉 of energy ≈ U . Their lifetime becomes infinite when
U → ±∞.

Projecting an eigenstate |A〉 of energy EA onto the
states |nn〉 and |hc〉

|A〉 =

LM∑
n=1

cnA|nn〉+

LH∑
hc=1

chcA |hc〉 , (7)

one finds the relation[
HM + JM (EA) 0

0 HH + JH(EA)

] [
CMA
CHA

]
= EA

[
CMA
CHA

]
,

which holds for arbitrary U . CMA and CHA are vectors of
LM components cnA and LH components chcA respectively.
The matrix JM (EA) has L2

M elements given by

JM (EA, nn,mm) =
LH∑
hc=1

(〈nn|HC |hc〉〈hc|HC |mm〉)

EA − εhc
(8)

and the matrix JH(EA) has L2
H elements of the form

JH(EA, hc, h̃c) =

LM∑
n=1

〈hc|HC |nn〉〈nn|HC |h̃c〉

U + 2Vn −EA
· (9)

We consider the main sub-band of states with energy
EA ≈ 0, resulting from the mixing by a perturbation of
order t2/U of a few states |hc〉 for which JH(EA) can be
simplified. Assuming W, t � U and U + 2Vn − EA ≈ U ,

one has to evaluate
∑L
n=1〈hc|HC |nn〉〈nn|HC |h̃c〉. This ex-

pression is composed of 12 sums over n, each of them hav-
ing the form

Q̃γδαβ =
L∑
n=1

Ψα(n)Ψβ(n′)Ψγ(n)Ψδ(n
′′) (10)
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Fig. 1. Γ0 (open symbols) and Γ∞ (filled symbols) for L = 25
(triangles), L = 76 (diamonds), L = 150 (squares) and L =
200 (circles). Dashed (dotted) lines are the Fermi golden rule
expression of equation (13) (Eq. (14)).

with various combinations of n′, n′′ = n ± 1. Therefore

Q̃γδαβ is not exactly equal to the Qγδαβ occuring around the
free boson limit. However, this difference should not be
statistically relevant and if one neglects it, one finds

JH(EA, hc, h̃c) ≈ ±2(24)1/2 t
2

U
Qγδαβ. (11)

This establishes the duality transformation U →√
24(t2/U) for E ≈ 0 which maps the distribution of the

coupling terms between the |fb〉 when U is small onto the
distribution of the coupling terms between the |hc〉 when
U is large. To illustrate this duality around the fixed point
Uc = (24)1/4t, we have numerically calculated the average
over the disorder of the local density of states

ρA(E) =
∑
αβ

|cαβA |
2δ(E +EA − εα − εβ) (12)

for L = L1 and EA ≈ 0. We have observed that 〈ρA(E)〉
can be fitted by a Lorentzian curve of width Γ0 (if αβ
denotes the states |fb〉) or Γ∞ (if αβ denotes the states
|hc〉). Fermi’s golden rule gives for the widths Γ at L ≈ L1

Γ0 ≈ 2πU2 1

L3
1

ρeff2 (L1) (13)

Γ∞ ≈ 2π
24t4

U2

1

L3
1

ρeff2 (L1) (14)

where ρeff2 ≈ L1.75
1 /t 6= ρ2(L1) ≈ L2

1/t because of
the multifractality of the Q-matrix. As shown in Fig-
ure 1, the widths Γ obey the duality property Γ0(U) =
Γ∞(
√

24t2/U), and are described by the above golden rule
approximations. When U ≈ Uc, the lifetime of the free bo-
son states is equal to the one of the hard core boson states.

When U increases, the statistical ensemble associated
to the two particle system exhibits a crossover from one

preferential basis (the free boson basis) to another prefer-
ential basis (the hard core boson basis). At Uc, the statisti-
cal ensemble is in the middle between the two preferential
bases, the mixing of the one body states is maximum, and
the localization length L2 therefore is maximum. When
E = 0 and U varies, a transition occurs in the two body
spectrum in 1d which is somewhat reminiscent of the one
body case in 3d when E = 0 and W varies. In the two
cases, one can expand in powers of U/t or t/U , of W/t or
t/W when the system is under or above the critical thresh-
old, respectively. The analogy is of course not complete,
since the two body spectrum in 1d has essentially Pois-
son statistics in the two perturbative limits, while the one
body spectrum in 3d exhibits W-D statistics for W � t
and Poisson statistics when W � t. Nevertheless, the
question whether or not the spectral fluctuations are of
the same kind in the vicinity of the threshold deserves to
be investigated.

Before showing the results, two arguments can be men-
tioned: (i) A multifractal Q-matrix is incompatible with
Wigner-Dyson level repulsion in 1d. The states |fb〉 or |hc〉
are directly coupled by U or t2/U to an effective density

ρeff2 < ρ2. Therefore, nearest neighbors in energy are very
likely uncorrelated, enhancing the probability to find level
spacings small compared to their average. (ii) Looking at
equation (2), one may assume that a broad distribution of
the matrix elements of HM may yield a single dominant
coupling term. This allows us to consider that the states
|hc〉 are mainly coupled via a few states |nn〉. This is not
far from the case discussed by Bohr and Mottelson [11]
(coupling via a single state) where the consecutive levels
EA of H satisfy the conditions εhc < EA < εhc+1 < EA+1,
εhc being the consecutive levels of HH . Since the statistics
of HH is essentially Poissonian, this forbids to have the
Wigner-Dyson rigidity for the EA. The most rigid spec-
trum would be achieved by putting the EA exactly in the
middle of two consecutive εhc. It is straightforward to find
that p(s) would then be equal to pc(s) = 4s exp(−2s). This
“semi-Poisson” distribution, where pc(s) ∝ s for s � 1
(as the Wigner surmise pW(s) = (π/2)s exp(−πs2/4)),
and which decays as exp(−s) for s � 1 (as the Pois-
son distribution pP(s)), is attracting increasing interest
since it characterizes [5] weak chaos in systems which are
“critical” (i.e. which can be mapped [7] in a certain “inte-
grable” basis onto an Anderson model at its critical point).
It was shown in reference [12] that a plasma model for the
energy levels can reproduce the level statistics of a dis-
ordered conductor if the logarithmic Wigner-Dyson level
repulsion was screened at an energy scale given by the
Thouless energy ET . Since ET is of order of the mean
level spacing ∆1 at the mobility edge, one can expect that
a short range plasma model should also give this “semi-
Poisson” distribution. This was recently confirmed [5] for
a logarithmic level repulsion truncated to the first con-
secutive level, where one finds p(s) = 4s exp(−2s) and
Σ2(E) = 1/16+E/2. After averaging over certain bound-
ary conditions, pc(s) was also found to give [4] a good
fit for the p(s) of the one body spectrum in 3d at the
mobility edge.
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These observations lead us to study p(s) as a function
of U and of the ratio L1/L around E = 0, where ρ2 has
a van Hove singularity for W = U = 0. The disorder
and the interaction remove the singularity and ρ2 develops
a small plateau around E ≈ 0. It is inside this plateau
that p(s) and Σ2 have been investigated. For U = 1 and
L = L1 = 150, the spacing distribution p(s) is shown
in Figure 4, in good agreement with the “semi-Poisson”
distribution. In the inset, one can see that this is specific
to the two particle problem, and does not characterize the
single particle spectrum for the same chain of size L1.

The statistics Σ2(E) displays also the behavior that
one expects at a critical point or for a short range plasma
model. Σ2(E) ≈ χ0+χ1E is shown in Figure 2. The values
of the compressibility χ1 = limE→∞Σ2(E)/E seem to de-
pend on the boundary conditions for the first consecutive
levels, as for the Anderson transition in 3d. The values
for the two particle system 0.41 (periodic) and 0.45 (hard
wall) coincide with the values given [4] by Braun et al.
for certain combinations of boundary conditions in the
different directions. This sensitivity of χ1 to the bound-
ary conditions may disappear for larger E (smaller time
scales), as it is the case for the one particle spectrum at
the mobility edge [13].

We now study the domain of validity for weak chaos
and universal critical statistics. To measure the deviation
of p(s) from the PP (s) or PW (s), we use the functional

η(U) =

∫ b
0 ds(p(s)− pW (s))∫ b

0
ds(pP (s)− pW (s))

(15)

with b = 0.4729. A Poisson spectrum gives η = 1, a
Wigner-Dyson spectrum gives η = 0 and “semi-Poisson”
corresponds to ηc = 0.386.

First, we vary U , imposing the relation L = L1. We
assume L1 to be given by the weak disorder formula L1 ≈
25/W 2. In the limits U → 0 and U → ∞, the TIP-levels
are given by εbf = εhc = εα + εβ which are uncorrelated
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Fig. 3. Weak chaos and interaction for L = L1: Crosses, pluses
and stars represent η(U) for L = 100, L = 150 and L = 200,
respectively.

(at least on energy scales smaller than the one particle
level spacing ∆1). This gives pP (s) for the TIP-spectrum.
One can see in Figure 3 that p(s) deviates for small U
and t2/U from pP (s) observed at U = 0 and U = ∞.
η(U) exhibits a plateau (UF < U < UH) at the value
ηc ≈ 0.386 which characterizes pc(s)). We suggest that
UF and UH are given by the conditions which hold [14]
for systems in which there is no coupling term between
consecutive energy levels. In agreement with the general
picture developed in reference [14] (see also Ref. [15]),
the threshold appears when the strength of the coupling

terms becomes of the order of the spacing 1/ρeff
2 of the

directly coupled levels. This gives 2UF/L
3/2
1 ≈ 4t/L1.75

1

and 2
√

24t2/(UHL
3/2
1 ) ≈ 4t/L1.75

1 , respectively, and seems
to account for the size of the plateau of the curve η(U).
This favours a line of critical points rather than an iso-
lated point when the condition L = L1 is imposed. The
U -dependence of χ1 exhibits the same plateau as η(U).
The results shown in Figure 2 for U = 1.25 do not vary
inside the plateau.

Second, for U = 1.25 and L = 100, we vary the disor-
der parameter W in order to study the role of the ratio
L1/L. When L� L1, the small fraction of TIP-states re-
organized by U disappears behind the set of TIP-states
which are not re-organized by U and which remain uncor-
related. p(s) does not differ from pP (s). On the contrary,
when L � L1, we approach the clean limit which can be
easily understood: For W = 0, the total TIP-momentum
K is conserved and the Hamiltonian matrix has a block
diagonal form in the free boson eigenbasis. Denoting by
εγ = 2 coskγ the eigenenergy of a single particle with mo-
mentum kγ , and assuming periodic boundary conditions,
one can easily show that the (L+ 1)/2 TIP eigenenergies
EA(K) of total momentum K modulo (2π) satisfy

2U

L

∑
kγ ,kδ

1

EA(K)− εγ − εδ
= 1. (16)
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The summation is restricted to the momenta kγ +kδ = K
modulo (2π). This sequence of (L + 1)/2 levels exhibits
the same property than in the case discussed by Bohr and
Mottelson: For a given K, the levels for U 6= 0 alternate
with the levels for U = 0. This sequence ofEA(K) can only
exhibit level repulsion between next nearest neighbors, but
not the long-range repulsion necessary for Wigner-Dyson
statistics. Since the total spectrum is the uncorrelated su-
perposition of the L different sequences associated to dif-
ferent total momenta K, one gets for the TIP spectrum
uncorrelated levels for any value of U when W = 0.

Between the two limits L � L1 and L � L1, one
can see in Figure 5 a plateau where the spectrum is more
rigid, η(L1/L) saturating to the “semi-Poisson” value.
This plateau for U = 1.25 is observed for 1 ≤ L1/L ≤ 10.
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Fig. 6. d(q) at U = 2 for L = L1 = 120 in the bases |fb〉 (open
symbols) and |hc〉 (filled symbols). The inset shows the estab-
lishment of the power-law behaviour of I2(D) for increasing
values of U in the |hc〉 basis.

A critical statistics for the spectrum is usually related
to multifractal wave functions. We have studied the pro-

jection CαβA of an eigenstate |A〉 onto the states |fb〉 and
onto the states |hc〉. Since the perturbation matrix ele-
ments (divided by U or t2/U) are multifractal, one expects
that this will eventually yield a multifractal structure for
|A〉 in the two bases for large and small enough U , respec-
tively. We have done the same analysis as in reference [8] to
which we refer for technical details and references. We di-
vide the plane (α, β) into (L/D)2 boxes of size D and com-

pute for each box i the probability pi =
∑

(αβ)∈boxi
|CαβA |.

After ensemble averaging, the moments Iq(D) =
∑
i p
q
i

have a power-law behaviour if U is large enough for the
|fb〉 basis (inset of Fig. 6), and if U is small enough for
the |hc〉 basis. So one finds Iq(D) ∝ D(q−1)d(q), d(q) defin-
ing the corresponding generalized Renyi dimensions. The
d(q) are roughly equal in the two bases (Fig. 6) and do
not depend on U as soon as the power-law behaviour is
established for Iq(D), i.e. inside the line of fixed points.

In summary, we have shown that this simple two par-
ticle system in 1d is characterized by two perturbative
regimes (in U or t2/U). These regimes are dominated by
the existence of a single preferential basis and are related
to each other by a duality transformation. In the mid-
dle, the mixing of the one body states by the interaction
is maximum, but the system is not chaotic (no Wigner-
Dyson statistics). It exhibits the weak chaos of the critical
systems, as confirmed by the spectral fluctuations. The
curves η(U,W ), χ1(U,W ) and dq(U,W ) in the |fb〉 and
|hc〉 bases are consistent with the existence of a weak crit-
ical chaos for a given size in (U,W ) domain located around
Uc and L1/L ≈ 1. In one dimension, a local interaction
can never drive a two particle system towards full chaos
with Wigner-Dyson statistics.
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